SOIL TESTING

17 ESSENTIAL ELEMENTS

- CARBON C
- HYDROGEN H
- OXYGEN O
- PHOSPHORUS P POTASSIUM K
- NITROGEN N
- SULFUR S
- CALCIUM Ca

2

- IRON Fe MAGNESIUM Mg
- BORON B
- MANGANESE Mn
- COPPER Cu
- ZINC Zn
- MOLYBDENUM Mo CHLORINE CI
- NICKEL Ni

17 ESSENTIAL ELEMENTS

1

- CARBON C
 HYDROGEN H
 OXYGEN 0
- PHOSPHORUS P
- POTASSIUM K
- NITROGEN N
- SULFUR S
- CALCIUM Ca
- BORON B MANGANESE Mn

MAGNESIUM Mg

IRON Fe

- COPPER Cu
- ZINC Zn
- MOLYBDENUM Mo
- CHLORINE CI
- NICKEL Ni

17 ESSENTIAL ELEMENTS

- CARBON C
- HYDROGEN H
- OXYGEN O
- PHOSPHORUS
 POTASSIUM K
 NITROGEN N

- SULFUR S
- CALCIUM Ca
- IRON Fe
- MAGNESIUM Mg
- BORON B
- MANGANESE Mn
- COPPER Cu
- ZINC Zn
- MOLYBDENUM Mo
- CHLORINE CI
- NICKEL Ni

4

6

MACRONUTRIENTS

- 1000 mg/kg or more
- C, H, O, N, P, K, S, Mg, AND Ca

MICRONUTRIENTS

 Less than 100 mg/kg • Mo, Cu, Zn, Mn, B, Fe, Cl, and Ni

C. HOPKNS CaFe Mn B Mg CuZn Mo Cl Ni

nickel

3

C. Hopkns café managed by my cousin Mo the Clown for a

TAKE A REPRESENTATIVE SAMPLE

- •Collect from several locations
- Depth depends on lab
- Combine and mix samples
- Take a sub-sample, approximately 1 cup
- •How often?

SOIL TESTING

- SLAN--sufficiency level of available nutrients
- BCSR--basic cation saturation ratio
- MLSN minimum level for sustainable nutrition

8

7

SLAN

- Oldest method
- •80 Years + Research
- •Interpretation varies with crop, soil type, climate etc.

Public labs

	1 Contractor			BOIL TEST RATINGS						Canadiana Canan.	
est .		and the second	and the second second		No.	a tana	-	-		POGenty .	
ut pre		58									
offer phi		90									
temptorus (P)		34 327						- 1			
(N) multiple		£7 Jan							Caluar	tel Callon	
and the state		K4 are						- 17	-	-	
Ingration (Fig.)		55 am							**	**	
and the second second		9.000							560	66.8	
arise (B)		0.4 ppm							1.04	16.8	
and the state		24 399							1.4	16.4	
		250 auto				_			3,84		
ingenetic (Nk)	-	30 ppm									
14.000		8-8 ppm				_					
adum (No)		5 mm									
olutive batts											
-game that ar	1.5 %	10vn 74									
09.4	-										
				_							
			SOL	FERTILITY	GUIDELIN	ES.					
rop : BENTO	RASS GR	EEN		Yield	Goal	1	Rec	Units:	LB/10	00 SQ F	
LNE		F904	830		•		Cu		0.000	20	
40	44	0.5	5	0.2	0.2	0	0	0		0	
HOP 1				Yield	Goal :		Rec	Units:			
				1.				1	_		

9

10

BCSR

Basic Cation Saturation Ratio

Based on an ideal ratio of cations on exchange sites

- Newer method
- Less research
- Private labs
- Tends to overestimate
- Do not use for turfgrass

Minimum Level for Sustainable Nutrition

- Developed recently by PACE Turf and Asian **Turfgrass Center**
- Dr. Larry Stowell and Dr. Micah Woods
- Replacement for SLAN
- Set minimum required for optimal turf growth Baseline soil nutrient concentrations
 - · Keep soil levels above this value
 - Gives minimum values instead of a range

 - Tells how much to applyIncorporates turf "growth potential"

Why Use MLSN?

- Focus on sustainability
- Reduce inputs
- Reduce maintenance costs • (or redirect costs, more on this later)
- Maintain expected turf performance
- Show reception to environmental concerns
- Plant health and soil health

14

Minimum Level for Sustainable Nutrition

- Apply all nutrients at ratio determined by MLSN
- Why a ratio? Nutrient uptake driven by nitrogen
- Only apply what the plant can use Amount determined by clipping nutrient content

Nutrient	Tissue ppm	Ratio:N	This sives us a putrient
N	40,000	1	use ratio:
Р	5,000	0.125	
к	20,000	0.5	N:P:K → 8:1:4
Ca	4,000	0.1	
Mg	2,000	0.05	

15

13

- We need three quantities:
- A. What nutrient amount does the turf use?
- · Site-specific estimate from growth potential
- B. What amount is required in the soil?
- Soil reserve, the MLSN guideline level
- C. What amount is *IN* the soil? <u>MLSN Soil Survey Guideline Level</u> Results Soil test result numbers

		MLSN Soil Guideline
F	рН	>5.5
F	Potassium (K ppm)	37
F	Phosphorus (P ppm)	21
C	Calcium (Ca ppm)	331
Ν	Magnesium (Mg ppm)	47
	Source: www.pacetu	urf.org

MLSN Calculation Example 1

Des Moines, IA

Turf Use + Soil Minimum - Soil Test = Amount
 Required

19

MLSN Calculation Example 2

Turf Use + Soil Minimum - Soil Test = Amount Required

Nutrient	Removed/Used by Plant	MLSN Minimums	Test Results	Amount Required (ppm)
N	NA	NA	4.7*	4.7*
Р	25	21	30	25+21-30= 16
К	105	37	40	105+37-40= 102
Ca	20	331	205	20+331-205= 146
Mg	10	47	75	10+47-75= -18
polication of 1 lb nutrient per 1000 ft ² = 33 ppm in top 4 inches				

Divide ppm required by 33 to get lbs per 1000 ft²

20

21

MLSN Calculation Example 2

Calculation Results: MLSN vs SLAN

Nutrient	Amount Required (MLSN, ppm)	MLSN	SLAN		
N	4.7*	3.8-6.2 ⁺ lb N/M	4.2-4.8* lb N/M		
Р	25+21-30= 16	1.10 lb P205/M	1.39 lb P ₂ O ₅ /M		
к	105+37-40= 102	3.7 lb K ₂ O/M	2.5 lb K ₂ O/M		
[†] Calculated in relation to MLSN P and K [‡] Calculated in relation to SLAN P and K					

25

27

MLSN Positives

- Adaptive to future research
 Turf nutrient understanding will evolve
- Adaptive to site and climate
- Reduce/redirect costs
- Maintain high quality
- Environmentally responsible

26

MLSN

- Good start, Going in the right direction
- Basically SLAN for turf based on turf quality

HOW ABOUT PASTE

EXTRACT?

- Turf quality not always the best guide
- •MSLN 6 YEARS, SLAN >86 YRS

MLSN Limitations

Disease control Diseases reduced by N

- dollar spot, rust, red thread
 Site application history
 If you know you need X, apply X!
- Budget consequences
- Supply company opposition

6.4.15 MICOR +11.7

28

Paste Extract Tests

- •Water-soluble test for short term results
- •Tells what nutrients are soluble in soil
- •Factors influencing paste tests •Weather (amount of rain), irrigation, poor water quality, high bicarbonate levels, recent fertilizer applications, topdressing etc.
- •Great tool for accessing soil salinity

Paste Extract Tests

- Should be used with standard soil tests every time
- Expect low extraction values for fertility
- Bicarbonates will show up (they dissolve easily in water)- they don't cause structure problems or sealing in the soil
- Data is lacking between turf quality and soluble nutrients

THE USEFULNESS OF A SOIL TEST DEPENDS ON PROPER INTERPRETATION

32

31

LABS TEND TO OVERESTIMATE HOW MUCH P IS NEEDED AND UNDERESTIMATE HOW MUCH K IS NEEDED

PHOSPHORUS P

- **FUNCTION**
- ENERGY TRANSFER
- •STARCH DECOMPOSITION
- GENETIC MATERIAL • GRASSES ARE VERY EFFICIENT USERS OF P

33

<u>PHOSPHORUS (</u>BRAY P1)

PPM		LB/A	KG/HA
• 0 - 5	VERY LOW	0 - 10	0 - 11
• 6 - 10	LOW	12 - 20	13 - 22
• 10 - 20	ADEQUATE	20 - 40	22 - 45
• 20 - +	HIGH	40 - +	45 - +

PHOSPHORUS P SUFFICIENCY LEVEL BY EXTRACTANT(CARROW) ppm P Low Medium Very low High BRAY P1 0-4 5-15 16-30 >31 MEHLICH III 0-12 13-26 27-54 >55 OLSEN 0-6 7-12 13-28 >29 NUMBERS VARY SOMEWHAT FROM LAB TO LAB.

37

LB/A

81-350

ADEQUATE 350-500 392-560

500-+

VERY LOW 0-80

LOW

HIGH

KG/HA

91-392

560-+

0-90

39

POTASSIUM

PPM

0 - 40

41 - 175

175 -250

250-+

40

RECOMMENDATIONS

- Maintain potassium within sufficiency range:
 - Soil K = 100 to 250 lb/acre or 50 to 125 ppm (Mehlich-III)
 - Tissue K = 2 to 3%
- If a deficiency in soil K exists, potassium can be applied biweekly at 0.2 to 0.3 lbs K_2O/ 1000-sq ft to build up soil K
- To maintain soil K level, potassium can be applied biweekly at 0.1 lbs K_2O/ 1000-sq ft

Л	1
+	Τ.

HOW ABOUT Ca, Mg, S and the MICRONUTRIENTS?

CALCIUM (Ca)

- •Cell wall formation
- •Cell division
- Osmotic balance
- Membrane stabilization

44

CALCIUM (Ca)

- •0.30 TO 1.25 % IN TISSUE
- •YOUNGER LEAVES TURN REDDISH-BROWN
- •FADES TO RED
- •LOW pH CONDITIONS
- Liming solves problem

45

43

SOIL TESTING ISSUES

- New emphasis on Ca in 90's
- •Ca applied to Calcareous (CaCO₃) sands •Ca/Mg ratios
 - •Gypsum (CaSO₄)
- •Other expensive amendments
- Calcareous sands for greens and sports fields
 Soil test methods?

46

MAGNESIUM (Mg)

•Center of chlorophyll

•Symptom - Chlorosis

Low pH & Low CEC

MAGNESIUM (Mg)

- •0.15 to 0.50 % in tissue
- •> 0.15 % in tissue deficient
- Soil test levels varies with CEC • Less than 4 meq
 - •Mehlich 1 (30 to 60 ppm)
 - •Mehlich 2 (70 to 140 ppm)
 - Ammonium acetate (80-140 ppm)

Higher CEC

• Double the numbers (Carrow 2001)

SULFUR (S)

•0.10 TO 0.50 % IN TISSUE

- •YELLOWING OF YOUNGER LEAVES
- SLOW GROWTH
- •RARE IN MOST OF U.S. BECAUSE OF HIGH SULFUR COAL • 12 to 15 lb/ac in Midwest
- MAY SEE IT IN RARE SITUATIONS

IRON (Fe)

- •COFACTOR FOR CHLOROPHYLL FORMATION
- •SYMPTOM CHLOROSIS
- •HIGH pH
- •MOST COMMON OF ALL **MICRONUTRIENT DEFICIENCIES**

50

49

IRON (Fe)

- •100 to 500 ppm in tissue
- Soil tests inaccurate
- •Very small amounts applied to tissue (0.3 to 0.5 lb Fe/ac)

SUMMER INDUCED **CHLOROSIS**

- David Devetter, MS Student
- Develops during high temperature periods
- Not observed in spring and fall
- Usually on sand, also can be on soil
- It is an iron problem

51

52

OUR OBSERVATIONS

- Summer-induced iron chlorosis
 - Appears from late July to early September
 - ·Goes away if left untreated
 - · Bentgrass and bluegrass
 - Widespread
 - Multiple countries
 - Golf courses
 - · Sports fields Home lawns
 - * While common on sand soils it is present in

55

Conclusions

- Summer-induced chlorosis was caused by an iron deficiency
- Soil temperature may play a role in summerinduced iron chlorosis
- Summer-induced iron chlorosis can be treated with iron fertilization
- Higher rates of iron lead to more color recovery
- Treating before symptoms occur does not work
- Control of chlorosis depends on timing of iron fertilization

56

MANGANESE

- •Activator of at least 35 plant enzymes
- Formation of chlorophyll
- Root growth
- Cofactor for lignin formation
- •20 to 500 ppm in tissue
- Soil tests misleading

MANGANESE

- •YELLOWING SIMILAR TO IRON DEFICIENCY
- •VEINS REMAIN GREEN TIPS MAY REMAIN GREEN
- •LEAVES DROP (lignin)
- •Take All Patch--Rutgers work

57

58

Zinc (Zn)

- Catalyst of enzymes
- Regulates gene expression
- Membrane function
- Stress management
- Saturation

•High temperature

20 to 55 ppm in tissue sufficient15 to 20 ppm deficient

Zinc (Zn)

- Deficiency rare
- Toxicity?
- Grant Spear graduate project
 Soil test labs-18 to 20 ppm in soil toxic

SUMMARY

- CREEPING BENTGRASS CAN TOLERATE MUCH HIGHER LEVELS OF ZN THAN ONCE THOUGHT
- LEVELS TERMED EXCESSIVE BY SOIL TESTING LABS ARE WELL WITHIN THE TOLERANCE LEVELS OF CREEPING BENTGRASS

COPPER (Cu)

- Catalyst in photosynthesis and resp.
- Carbohydrate formation
- Lignin formation
- 5 to 38 ppm in tissue
- Deficiencies in high pH soils (rare)

62

61

COPPER (Cu)

MIKE FAUST MS PROJECT '98 TO '99

- 0 to 600 ppm Cu
- Cu reduced Bentgrass rooting at 200 ppm and above. Approximately 50% reduction at 600 ppm

63

BORON (B)

- Membrane and cell wall formation
- Sugar transport, carbohydrate metabolism
- Respiration
- Little needed (5 to 10 ppm in tissue)
- Deficiencies rare
- Very narrow range between deficiency and toxicity
- Sewage effluent (1 to 2 ppm can be toxic)

64

MOLYBDENUM (Mo)

- Enzyme reactions
- Sulfur metabolism
- Function of P in plant
- 0.1 to 1 ppm in tissue
- Deficiency
- older leaves pale green
- Toxicity by mines in mountains

SUMMARY

USING SOIL TESTS TO DEVELOP A FERTILITY PROGRAM

THINGS TO BE AWARE OF

68